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Abstract. The feasibility of a perturbation expansion for Green’s functions of the t − J model directly
in terms of X-operators is demonstrated using the Baym-Kadanoff functional method. As an application
we derive explicit expressions for the kernel Θ of the linearized equation for the superconducting order
parameter in leading order of a 1/N expansion. The linearized equation is solved numerically on a square
lattice taking instantaneous and retarded contributions into account.
Classifying the order parameter according to irreducible representations Γi, i = 1, ... 5, of the point group
C4v of the square lattice and according to even or odd parity in frequency we find that a reasonably
strong instability occurs only for even frequency pairing with d-wavelike Γ3 symmetry. The corresponding
transition temperature Tc is ∼ 0.01|t| where t is the nearest-neighbor hopping integral. The underlying
effective interaction consists of an attractive, instantaneous term and a retarded term due to charge and
spin fluctuations. The latter is weakly attractive at low frequencies below ∼ J/2, strongly repulsive up to
∼ |t| and attractive towards even higher energies. Tc increases with decreasing doping δ until a d-wavelike
bond-order wave instability is encountered near optimal doping at δBO ∼ 0.14 for J = 0.3. Tc is essentially
linear in J and rather insensitive to an additional second-nearest neighbor hopping integral t′. A rather
striking property of Tc is that it is hardly affected by the soft mode associated with the bond-order wave
instability or by the Van Hove singularity in the case with second-nearest neighbor hopping. This unique
feature reflects the fact that the solution of the gap equation involves momenta far away from the Fermi
surface (due to the instantaneous term) and many frequencies (due to the retarded term) so that singular
properties in momentum or frequency are averaged out very effectively.

PACS. 74.20.-z Theories and models of superconducting state – 74.20.Mn Nonconventional mechanisms
(spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal
Fermi liquid, Luttinger liquid, etc.) – 74.72.-h High-Tc compounds

1 Introduction

Many studies of the t−J model suggest that this model is
able to describe a large body of the low-energy physics of
real high-Tc superconductors [1,2]. This is true for many
normal state properties of high-Tc oxides where accurate
numerical predictions of the t − J model are available
for the comparison with experiment. Whether the phe-
nomenon of high-Tc superconductivity itself can be ex-
plained within this model is presently not so clear. There
are several calculations yielding instabilities of the normal
state with respect to d-wave superconductivity [2–5] and
also reasonably high values for the transition temperature
Tc [6–9]. These calculations, however, use often somewhat
uncontrolled assumptions, making definite conclusions dif-
ficult. There is also the view [1] that the large observed

a e-mail: zeyher@greta5.mpi-stuttgart.mpg.de
b Permanent address: Departamento de F́ısica, Facultad de
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values for Tc are not directly related to large mean field
Tc’s in isolated CuO2 planes described by the t−J model.
Instead it is argued that pair tunneling between planes
enhances strongly weak, plane-related superconducting in-
stabilities producing in this way the phenomen of high-Tc
superconductivity.

In this paper we present a new attempt to calculate
Tc for the t − J model in a well controlled way. Similar
as in references [3,4] we do not assume the validity of
Migdal’s theorem or approximate the self-energy by the
lowest skeleton graphs. Instead we assume that 1/N can
be considered as a small parameter where N is the number
of electronic degrees of freedom per site. N consists of two
spin directions times N/2 copies of the local electronic or-
bital counted by a flavor index. Similar like in many slave
boson calculations [3,4,10] the flavor index is introduced
in a somewhat artificial way just to make N a large in-
teger. The SU(2) spin symmetry of the original model is
thus enlarged to the symplectic group Sp(N/2). The orig-
inal constraint of having no double occupancies of sites
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is modified to the condition that at mostN/2 electrons can
occupy the N states at each site. Compared to references
[3,4] our treatment exhibits two novel features. First, the
constraint is implemented in a different and more rigorous
way yielding differences in the equation for the supercon-
ducting gap already in the leading order O(1/N). Sec-
ondly, we have solved the linearized gap equation numer-
ically obtaining also values for Tc. Our conclusions about
the occurrence of superconductivity in the t − J model
are thus no longer based only on Fermi surface averaged,
static coupling strengths as in references [3,4,10,11].

Regarding constraints their implementation in the X-
operator approach is trivial [12]. Mathematically, the con-
straint means that the sum over diagonal elements of X-
operators at a given site has to be equal to N/2. This sum
commutes with every X-operator and thus is a multiple
of the identity operator in any irreducible representation
of X-operators. Enforcing the constraint means therefore
just to select the correct subspace of Hilberts space where
the eigenvalue of this sum is equal to N/2. In slave bo-
son theory the X-operators are represented by products
of slave operators and the Hilbert space is enlarged to
the Hilbert space of slave particles. The constraint means
now that at each site the number operator of slave par-
ticles has to be equal N/2. This condition can obviously
not hold as an operator identity, i.e., cannot be enforced
at any position of an expectation value of slave operators.
However, it should be enforced at all positions which orig-
inally separated X-operators. Such an enforcement for a
fixed N seems to be in conflict with the Bose condensation
of the bosonic slave particles as well as the independence
of fermion and bosonic slaves in the limit N →∞. Using
the Dirac method to enforce constraints on the operator
level it has indeed been shown [13] that the commuta-
tor relations for the slave particles have to be changed
and that, for instance, the fermionic and the bosonic slave
operators no longer commute with each other. In view
of this open problems we use in Sections 2 and 3 a per-
turbation expansion directly in X-operators following the
work of reference [14]. This procedure will give us also the
opportunity to compare the O(1/N) expression for the
gap equation with that of the slave boson approach to see
whether the 1/N expansions are really the same in the two
cases. The final analytic results for the gap equation have
already been presented in reference [9], however, without
derivations. These derivations can be found in Sections 2
and 3.

The second new feature of our work deals with the
solution of the gap equation. Previous work using 1/N
expansions concluded from Fermi surface averaged, static
coupling constants on the occurrence of superconductivity.
Our previous work [9,11] has shown that superconducting
instabilities occur for any symmetry channel, doping and
both for J = 0 and J 6= 0. The point is more whether
the corresponding Tc is very small or large enough to be
relevant. Tc here is understood as the transition tempera-
ture within mean-field theory. This means that the lower-
ing of Tc due to fluctuations in the superconducting order
parameter is not taken into account. This assumption is

justified if one compares with real, three-dimensional su-
perconductors but does not apply, of course, to strictly
two-dimensional models where fluctuations drive the or-
der parameter to zero at any finite temperature. In order
to determine Tc one has to solve the gap equation which
has several non-BCS features: the kernel of the linearized
gap equation consists of an instantaneous and a retarded
term and both are characterized by different cutoffs. More-
over, the presence of the instantaneous term does not al-
low to restrict the momenta to the Fermi surface. Conse-
quently, we solved the gap equation by numerical means.
Our method is also suitable to investigate the question
of odd frequency pairing [15] in our model. In this case
the instantaneous term drops out but the full frequency
dependence of the kernel must be kept in addition to the
momentum dependence along the Fermi line. Results for
odd frequency pairing will also be presented in Section 4
together with the conclusions.

2 Model and general equations
for the electron Green’s function

The Hamiltonian of the t− J model can be written as

H =
∑
ij

p=1...N

tij

N
Xp0
i X

0p
j +

∑
ij

p,q=1...N

Jij

4N
Xpq
i X

qp
j

−
∑
ij

p,q=1...N

Jij

4N
Xpp
i Xqq

j . (1)

Let us consider first the case N = 2. Assuming one orbital
per site and excluding double occupancies of sites there are
three states |pi 〉 at each atom i. p = 0 denotes the empty
state, and p = 1, 2 singly occupied states with spin up and
down. The Hubbard operators Xpq

i can be represented as
projection operators Xpq

i = |pi 〉〈
q
i | and obey the following

commutator and anticommutator relations

[Xpq
i ,X

rs
j ]± = δij(δqrX

ps
i ± δspX

rq
i ), (2)

and the completeness relation

2∑
p=0

Xpp
i = 1. (3)

The upper (lower) sign in equation (2) holds for boson-
like or mixed (fermionlike) Hubbard operators defined by
p, q > 0 or p = q = 0 (p = 0, q > 0 or p > 0, q = 0). For
i = j both the upper and lower signs hold in each case. The
first term in equation (1) describes the hopping of parti-
cles between the sites i and j with matrix elements tij .
The second term in equation (1) denotes the Heisenberg
interaction between the spin densities at site i and j with
the exchange constants Jij . The third term in equation
(1) represents the charge-charge interaction of the t − J
model. In the following we consider Jij only between near-
est neighbors (Jij = J) and tij between nearest (tij = t)



R. Zeyher and A. Greco: Effective interactions and superconductivity in the t− J model 475

and next nearest (tij = t′) neighbors. We also use always
|t| as energy unit.

The Hamiltonian in equation (1) is a generalization
from N = 2 to an (even) arbitrary integer N . The orbital
index p consists now of the spin and a flavor index, the
latter enumerating N/2 identical orbitals at a site. The
symmetry group of H is the symplectic group Sp(N/2).
For N > 2 the operators X can no longer be written as
projection operators in some basis. Instead, fermionlike
(bosonlike or mixed ones) operators are assumed to satisfy
the anticommutator (commutator) relations of equation
(2). Only some of the diagonal operators can assumed to
retain their projection properties, namely, (Xpp

i )2 = Xpp
i

for p > 0. Most other relations characteristic of projection
operators such as X10

i X
01
i = X11

i are lost for N > 2.
The completeness relation equation (3) is replaced by the
constraint

Qi =
N∑
p=0

Xpp
i = N/2. (4)

By explicit construction of the Hilbert space and the ac-
tion of the X ′s on its vectors one can show [12] that the
above properties, together with H, specify completely the
problem. In particular, X00

i is a non-negative operator. As
a result, equation (4) means that at most N/2 particles
can occupy the N available states at a site. In this way
one may expect that expectation values of observables ap-
proach smoothly the physical case N = 2 from large N ′s
yielding a basis for 1/N expansions. We also would like to
point out that slave boson treatments of H have many fea-
tures in common with our approach. However, the Hilbert
spaces are different in the two cases as well as the enforce-
ment of the constraint equation (4). Qi commutes with all
Hubbard operators and thus is proportional to the iden-
tiy in any irreducible representation of the X-operators.
Enforcement of the constraint means in our case just the
selection of the correct subspace of the Hilbert space where
equation (4) is satisfied as an operator identity.

Following the Baym-Kadanoff procedure [16–18] we
define a non-equilibrium Matsubara Green’s function of
two fermionic operators X(1) and X(2) by

G(12) = −〈TSX(1)X(2)〉/〈S〉, (5)

S = Te
∫
d1X(1)K(1). (6)

The number 1 stands for an internal pair index p, q as well
as a site and a (imaginary) time index i, τ .

∫
d1 means∑

p,q,i

∫ β
0
dτ , where β is the inverse temperature. In equa-

tions (5, 6) T is the time ordering operator andK an exter-
nal source term which is assumed to couple only to bosonic
X-operators. We also introduce the non-equilibirum ex-
pectation value of bosonic X-operators by

L(1) = 〈TSX(1)〉/〈S〉. (7)

Using the Hamiltonian equation (1) the Heisenberg equa-
tion of motion for fermionic operators becomes

∂

∂τ1
X(1) =

∫
d2d3t(123)X(2)X(3), (8)

with

t(123) = δ(τ2 − τ1)δ(τ3 − τ1)
(ti1i3δi1i2 + Ji1i2/2δi1i3)

N

×
[
δq10δq30(1− δp30)(δp20δq2q1δp3p1 + δp2p1δq2p3)

− δp10δp30(1− δq30)(δp2q3δq2q1 + δp2p1δq20δq3q1)
]
.

(9)

Equation (9) agrees with equation (5) of reference [19] if
the different sign convention for the hopping term is taken
into account. Using equation (8) and rewriting higher-
order correlation functions in terms of functional deriva-
tives with respect to K the equation of motion for G can
be written as∫

d2(G−1
0 (12)−Σ

′

(12))G(21′) = Q(11′), (10)

Σ
′

(12) = −

∫
d3t(132)L(3)

+

∫
d3d4d5t(134)G(45)Γ (52, 3), (11)

Γ (12, 3) = δG−1(12)/δK(3). (12)

G0 is the unperturbed Green’s function

G−1
0 (12) = −δ(1− 2)

∂

∂τ2

− δ(1̄− 2̄)(K00(1̄)δq1q2 −K
q1q2(1̄)). (13)

Q is given by

Q(11′) = δ(1− 1′)(Lpq
′

(1̄)δqp′ + Lp
′q(1̄)δq′p), (14)

where the index 1 = (pq, i, τ) has been split into 1 =
(pq, 1̄) with 1̄ = (iτ). L can be expressed by G so the

above system of equations for G, the self-energy Σ
′
, and

the vertex Γ is closed.
For our purposes it is more convenient to use a nor-

malized Green’s function g which obeys a Dyson equation
with the usual δ-function on its right-hand side. Writing

g(11′) =

∫
d2G(12)Z−1(21′), (15)

and requesting that Z satisfies the following equation

Z(11′) = Q(11′)−

∫
d3d4d5t(134)g(45)

δZ(51′)

δK(3)
, (16)

equations (10–12) assume the form∫
d2(G−1

0 (12)−Σ(12))g(21′) = δ(1− 1′), (17)

Σ(12)=−

∫
d3t(132)L(3)+

∫
d3d4d5t(134)g(45)γ(52, 3),

(18)
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γ(12, 3) = δg−1(12)/δK(3). (19)

From equations (17, 19) follows, moreover, the equation
for the vertex

γ(11′, 3) = α(11′; 3) +

∫
d4d5Θ(11′, 45)γ(45, 3), (20)

with

α(11′, 3) =
δG−1

0 (11′)

δK(3)
−

∫
d4
δΣ(11′)

δL(4)

δL(4)

δK(3)
, (21)

Θ(11′, 45) =

∫
d6d7

δΣ(11′)

δg(67)
g(64)g(57). (22)

In equation (22) we have replaced the functional deriva-
tive of g with respect to K by the vertex γ using Dyson’s
equation which also leads to a sign change. The above
equations are exact and hold both in the normal and the
superconducting state. In the normal state the two inter-
nal index pairs in G(12) must obey either p1 = q2 = 0
or p2 = q1 = 0. From Dyson’s equation follows then that
the same holds for Q(12) whereas the possible indices in
G0(12), Σ(12), and g(12) obey either p1 = p2 = 0 or
q1 = q2 = 0. In the superconducting state there are no
such restrictions; the only general requirement is that all
these indices are associated with fermionic operators.

The self-energy is a functional of g and L, i.e.,

Σ = Σ[g, L]. (23)

In order to derive the linearized equation for the anoma-
lous self-energy we split Σ into the normal part ΣN and
a small anomalous part Σan. Expanding equation (23) up
to linear terms we obtain

Σan(11′) =

∫
d2d3

(δΣ(11′)

δg(23)

)
N
δg(23)

+

∫
d2
(δΣ(11′)

δL(2)

)
N
δL(2), (24)

where δg and δL are of first order in the anomalous part
and the subscript N means that the functional derivatives
are to be taken in the normal state. Now δL has no linear
contribution due to gauge invariance and thus drops out
in equation (24). Calculating δg from Dyson’s equation
(17) in linear approximation we obtain

Σan(11′) =

∫
d2d3Θ(11′, 23)Σan(23), (25)

where Θ is given by equation (22) with all quantities
taken in the normal state. Equation (25) represents the
linearized equation for a general order parameter for su-
perconductivity. In order to have superconductivity the
homogenous equation (25) must have a nonvanishing so-
lution for Σan. The highest temperature where this occurs
is the transition temperature Tc.

The basic quantitity to be calculated is according to
equation (25) the kernel Θ. In order to find a functional
equation for Θ we get from equation (18)

δΣ(11′)

δg(78)
=

∫
d2t(127)γ(81′, 2)

+

∫
d2d3d6t(123)g(36)

δγ(61′, 2)

δg(78)
, (26)

and from equation (20)

δγ(61′, 2)

δg(78)
=
δα(61′, 2)

δg(78)

+

∫
d9′d10′Θ(61′, 9′10′)

δγ(9′10′, 2)

δg(78)

+

∫
d9′d10′

δΘ(61′, 9′10′)

δg(78)
γ(9′10′, 2). (27)

Solving equation (27) for δγ/δg, inserting the result into
equation (26) and inserting equation (26) into equation
(22) yields an exact functional equation for Θ.

3 1/N expansion for the kernel Θ

The equation for Θ obtained in the previous section is too
difficult to be solved directly. On the other hand it is exact
and holds for any N so it may serve as a starting point
for approximate treatments. In the following we assume
that 1/N may be used as a small parameter and calculate
Θ up to order 1/N . This will allow us to obtain the gap
equation (25) in leading order of the 1/N expansion.

The N -dependence of an equilibrium quantity is deter-
mined by the number of coupling constants it contains and
the number of free internal summations. In equilibrium,
i.e., without the source term K, we have, for instance,

g

(
0q1 0q2
1̄ 2̄

)
= δq1q2g(1̄− 2̄), (28)

Σ

(
0q1 0q2
1̄ 2̄

)
= δq1q2Σ(1̄− 2̄), (29)

γ

(
oq1 oq2 p3q3
1̄ 2̄, 3̄

)
=
−1

N
δp3q3δq1q2γc(1̄2̄, 3̄)

+ δq1p3δq2q3γs(1̄2̄, 3̄), (30)

and similar expressions for α and Θ. In equations (28–30)
all the indices q1, q2, ... are assumed to be larger than zero.
The equilibrium Green’s function g, the self-energy Σ, the
charge vertex γc and the spin vertex γs are free of inter-
nal indices. In the following we need only the leading O(1)
contributions for these quantities. From equations (13, 17,
19) follows that the spin vertex becomes then simply equal
to δ(1̄− 2̄)δ(1̄− 3̄). Using the constraint equation (4) one
also recognizes that the charge vertex γc defined in equa-
tion (30) is equal to the element q1 = q2 > 0, p3 = q3 = 0
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of the general vertex γ on the left-hand side of equation
(30) which is the motivation to use prefactors in equation
(30) in defining γc.

Decomposing the labels 1,1′, etc. into their internal
and external parts the anomalous self-energy or order pa-

rameter has the form Σan

(
p10 0q′1
1̄ 1̄′

)
, or in more detail,

Σan

(
σ1m10 0σ′1m

′
1

1̄ 1̄′

)
. In the following we are interested

in order parameters which are structureless in the flavor
indices, i.e., we assume always m1 = m′1. With respect to
spin indices we consider either singlet or triplet pairing.
Both cases are included if we put σ1 = −σ′1. Correspond-
ingly we will write for the internal indices p1, p̄1 thus indi-
cating the special relationship between these two indices.
Exposing explicitly the internal indices the gap equation
(25) becomes

Σan

(
p10 0p̄1

1̄ 1̄′

)
=
∑
p2

∫
d2d3Θ

(
p10 0p̄1 p20 0p̄2

1̄ 1̄′, 2̄ 3̄

)
Σan

(
p20 0p̄2

2̄ 3̄,

)
(31)

where Θ is to be taken in the normal state. Equation (31)
also makes visible which indices for Θ are actually needed
in the gap equation. A closer examination shows that the
first two contributions on the right-hand side of equation
(27) are of higher orders in 1/N than the third term in this
equation for the needed combination of indices. Dropping
these terms and inserting equations (26, 27) into equation
(22) yields the following equation forΘ valid up toO(1/N)
and for the above combinations of internal indices:

Θ(11′, 910) =

∫
d2d7d8t(127)γ(81′, 2)g(79)g(108)

+

∫
d2d3d6d7d8d9′d10′t(123)g(36)

×
δΘ(61′, 9′10′)

δg(78)
γ(9′10′, 2)g(79)g(108).

(32)

The first term on the right-hand side of equation (32)
could have been also obtained directly from equation (18).
Conssidering only anomalous contributions to Σ the first
term on the right-hand side of equation (18) cannot con-
tribute, wheras the second one can contribute in two ways:
a) via an anomalous g and a normal vertex γ, b) via a nor-
mal g and an anomalous vertex γ. Case (a) corresponds
to the usual situation of Eliashberg theory and also of the
slave boson treatment of superconductivity in the t − J
model in O(1/N): Σan consists then of a Fock diagram
containing an anomalous Green’s function and an effec-
tive interaction taken in the normal state. Linearizing g
in Σan case (a) immediately yields the first term on the
right-hand side of equation (32). Its evaluation is straight-
forward and shows that it is of O(1/N) for the relevant
combination of internal indices. This indicates that Tc → 0
for N → ∞ which agrees with the fact that at N = ∞

the system consists of renormalized, but non-interacting
fermions.

The leading contribution of the second term on the
right-hand side of equation (32) is obtained by taking the
spin-flip part in the hopping matrix element t and the
spin vertex γs in O(1) for the vertex γ. As a result only
one sum over internal indices survives.The second term in
equation (32) is of O(1/N) if the two functions

g(1)(6̄1̄′, 2̄|7̄8̄) =
∑
p3

δΘ

(
p30 0p̄1 0p1 0p3

6̄ 1̄′, 2̄ 2̄

)
δg

(
p̄10 0p1

7̄ 8̄

) , (33)

g(2)(6̄1̄′, 2̄|7̄8̄) =
∑
p3

δΘ

(
p30 0p̄1 p30 p10
6̄ 1̄′, 2̄ 2̄

)
δg

(
p̄10 0p1

7̄ 8̄

) , (34)

are of O(1). Equations for g(i), i = 1, 2 can be obtained
from equation (32) by taking appropriate derivatives. An
examination of the various terms shows that terms with
a second functional derivative of Θ are smaller by a fac-
tor 1/N compared to the leading ones and thus can be
neglected. One then finds that the functions g(i) have the
form

g(1)(6̄1̄′, 2̄|7̄8̄) = δ(2̄− 8̄)g(1)(6̄1̄′, 2̄|7̄), (35)

g(2)(6̄1̄′, 2̄|7̄8̄) = δ(2̄− 7̄)g(1)(6̄1̄′, 2̄|8̄). (36)

The reduced functions g(i)(6̄1̄′, 2̄|8̄) (the use of the same
name for corresponding functions with different number
of arguments should not cause any confusion) satisfy the
integral equation

g(i)(1̄, 1̄′, 2̄|7̄)=h(i)(1̄, 1̄′, 2̄|7̄)

−

∫
d3̄d4̄d6̄Nt(1̄3̄4̄)g(6̄4̄)g(i)(6̄1̄′, 3̄|7̄)g(2̄3̄),

(37)

with

h(1)(1̄1̄′, 2̄|7̄) = Nt(1̄1̄′7̄)g(2̄1̄′), (38)

h(2)(1̄1̄′, 2̄|7̄) = −

∫
d3̄d4̄Nt(1̄3̄4̄)γc(7̄1̄′, 3̄)g(4̄2̄). (39)

Here t(1̄2̄3̄) denotes the external part of t(123), i.e., the
first three factors outside of the bracket in equation (9). In-
serting the explicit expression for t into equation (37) one
finds that equation (37) represents an integral equation for
g(i) with a kernel consisting of not more than 6 separable
contributions. The solution of equation (37) thus reduces
to the inversion of at most 6 × 6 matrices similar as in
the case of the charge vertex γc dicussed in reference [19].
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Inserting the resulting expressions back into equation (32)
and performing Fourier transforms one obtains after some
elementary, but tedious algebra the following results. The
linearized gap equation (25) becomes

Σan(k) = −
T

NNc

∑
k′

Θ(k, k′)
1

ω2
n′ + ε2(k′)

Σan(k′). (40)

Nc is the number of cells and k the supervector k = (n,k),
where n denotes a fermionic Matsubara frequency ωn =
(2n+1)πT with T being the temperature. ε(k) is the one-
particle energy with momentum k in the limit N → ∞
given by the implicit equation

ε(k) =
δ

2
t(k)− J(k) ·

1

Nc

∑
p

cos(px)f(ε(p− µ)) (41)

where δ is the doping, t(k) and J(k) the Fourier trans-
forms of the coupling constants tij and Jij , respectively,
µ is the chemical potential and f the Fermi function.

The kernel Θ in equation (40) consists of four different
terms

Θ(k, k′)=Θ(1)(k, k′)+Θ(2)(k, k′)+Θ(3)(k, k′)+Θ(4)(k, k′).
(42)

The first two terms are given by

Θ(1)(k, k′) = ∓t(k′)∓ J(k− k′)− t(k′)− J(k− k′),
(43)

Θ(2)(k, k′) = (t(k′) + J(k− k′))(γc(k, k
′ − k) + 1). (44)

Here, γc is the charge vertex in O(1) determined by

γc(k, q) = −1 +
6∑

α,β=1

Fα(k)(1 + χ(q))−1
αβχβ2(q), (45)

with the susceptibility matrix

χαβ(q) =
1

Nc

∑
k

Eα(k,q)Fβ(k)
f(ε(k + q))− f(ε(k))

ε(k + q)− ε(k)− iνn
·

(46)

q is the supervector q = (q, iνn) where νn denotes the
bosonic Matsubara frequency 2πnT . The two vectors E
and F are given by

Eα(k,q)=(1, t(k+q)+J(q), cos kx, sin kx, cosky , sinky),
(47)

Fβ(k) = (t(k), 1, J cos kx, J sin kx, J cos ky, J sinky).
(48)

The explicit expressions for the third and fourth contri-
butions to Θ are

Θ(3)(k, k′) = −
5∑
r=1

Ẽr(−k)χ̃2r(k − k
′)γ(k, k′ − k)

+
5∑

r,s=1

Ẽs(−k)χ̃rs(k − k
′)Ṽr(k − k

′), (49)

Θ(4)(k, k′) = ±
5∑

r,s=1

(Ẽs(−k)χ̃rs(k + k′))(F̃r(−k′)

+ W̃r(k + k′)), (50)

with the vectors Ṽ and W̃

Ṽr(k−k
′)=

5∑
s=1

(1 + χ̃(k − k′))−1
rs χ̃2,s(k − k

′)γc(k, k
′ − k),

(51)

W̃r(k + k′) =−
5∑

s,t=1

(1 + χ̃(k + k′))−1
rs F̃t(−k′)χ̃ts(k + k′).

(52)

The vectors Ẽ and F̃ have five components and are ob-
tained from the six-component vectors E and F by omit-
ting the second component. In an analogues way, χ̃2,s is
obtained from the second row of the matrix χ by omit-
ting the second element. Similarly, the 5 × 5 matrix χ̃ is
obtained from the 6× 6 matrix χ by dropping the second
row and second column. The upper (lower) signs in the
contibutions Θ(i) refer to singlet (triplet) pairings.

The kernel Θ(k, k′) is invariant under the transforma-
tions of the point group C4v of the square lattice. As a
result Σan(k) transforms corresponding to one of the five
irreducible representations Γi of C4v, and it can be cho-
sen to be either even or odd in Matsubara frequencies. Γ1

corresponds to singlet s- or extended s-wave, Γ3 to singlet
d-wave- and Γ5 to triplet p-wave pairing for even frequency
pairing. The linearized gap equation (40) splits completely
into its irreducible parts. This also means that the mo-
menta k,k′ can be restricted to 1/8 of the Brillouin zone
which greatly simplifies the numerical solution of equa-
tion (40). In the following we will deal with even frequency
pairing unless the opposite is explicitly stated and drop for
simplicity the index which differentiates between even and
odd frequency-pairing. The irreducible kernels and order
parameters will thus be denoted by Θi(k, k

′) and Σan,i(k),
respectively.

4 Discussion of the gap equation
and numerical results

According to equation (42) the total kernel Θ is the sum
of four contributions. The first one, Θ(1), represents the
instantaneous part of Θ. From equation (40) follows that
positive values for Θ(1) correspond to repulsion, negative
values to attraction between electrons. Keeping only Θ(1)

and decomposing it into its irreducible symmetry compo-
nents the gap equation (40) becomes for the representation
i = 1... 5 of the point group C4v of a square lattice

Σi,an(k) =
−1

NNc

∑
k′

Θ
(1)
i (k,k′)χ(k′)Σi,an(k′), (53)
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with

χ(k′) =
tanh((ε(k′)− µ)/T )

2(ε(k′)− µ)
, (54)

Θ
(1)
2 = Θ

(1)
4 = Θ

(1)
5 = 0, and

Θ
(1)
1 (k,k′) = 8|t|η1(k′)− 8Jη1(k)η1(k′), (55)

Θ
(1)
3 (k,k′) = −8Jη3(k)η3(k′). (56)

In equations (55, 56) we assumed nearest-neighbor hop-
ping with tij = −|t| and used the basis functions η1(k) =
(cos(kx) + cos(ky))/2, η3(k) = (cos(kx) − cos(ky))/2. In-
serting the kernels equations (55, 56) into the gap equation
yields the following conditions for a finite Tc:

s−wave pairing (Σan ∼ constant):

1 + a|t|+
ab1|t|J

1− Jb1
= 0, (57)

extended s−wave pairing (Σan ∼ η1(k)):

1− b1 +
ab1|t|J

1 + a|t|
= 0, (58)

d−wave pairing (Σan ∼ η3(k)):1− b3J = 0. (59)

Here we used the following abbreviations

a =
8

NNc

∑
k′

χ(k′)η1(k′), (60)

bl =
8

NNc

∑
k′

χ(k′)η2
l (k′), (61)

for l = 1, 3. A numerical evaluation shows that in the
interesting parameter region 0 ≤ J ≤ 0.3, 0 ≤ δ ≤ 0.8 (δ
is the doping) and at low temperaturs a, b1, b3 are positive
and b1 < 3. This means that there is never an instability
with respect to constant s-wave pairing. b1 is an increas-
ing, b3 a strongly decreasing function with increasing δ
and these two functions cross around δ ∼ 0.6. Thus d-wave
pairing is stable in any case for δ < 0.5. For 0.5 ≤ δ ≤ 0.8
a|t| is much larger than 1 so that the third term in equa-
tion (58) cancels the second term to a large extent making
extended s-wave pairing also in this region unfavourable.
Thus we find that the instantaneous contribution to the
kernel strongly favours d-wave pairing in the interesting
parameter regime. The reason for this is to a large ex-
tent a band structure effect: b3 is much larger than b1 at
small dopings because of large contributions around the
X-point. At larger doping the competing extended s-wave
pairing is strongly suppressed by its coupling to the hop-
ping term, which ultimately is caused by the constraint.

Θ(2), Θ(3), and Θ(4) are retarded contributions to Θ.
Θ(2) is mainly determined by collective charge fluctuations

due to the poles of γc. Θ
(3) and Θ(4) originate from the

anomalous part of the vertex and involve both charge and
spin fluctuations. The latter dominate in Θ(4) in agree-
ment with the sign change between its singlet and triplet
contribution. Quantitatively, Θ(4) is by far the largest of
the retarded contributions. Our Θ does not contain terms
which are related to the magnons of the undoped case.
Such contributions are of higher order in 1/N than those
considered above and are thus neglected.

Our expression for Θ is different from that of the slave
boson approach [3]. Σan in the slave boson approach es-
sentially consists of a spinon Fock term with an effective
interaction taken in the normal state times an anomalous
spinon Green’s function. Such an contribution clearly cor-
responds to the case (a) discussed after equation (32), i.e.,
to the first term on the right-hand side of equation (32),
or, equivalently. to the sum of Θ(1) and Θ(2). Our contri-
butions Θ(3) and Θ(4) have no analogue in the slave boson
approach though they are clearly also of O(1/N). The dif-
ferences between the two approaches can be made more
explicitly by considering two limiting cases. For J → 0 Θ
reduces to equation (9) of reference [11] The underlying
interactions are still spin-dependent as can be seen from
the singlet versus triplet case. Such a dependence on spin
is not present in the corresponding slave boson expres-
sion [10]. Furthermore, the high-frequency limit of Θ, i.e.,
Θ(1) should be identical to that of the slave boson expres-
sion if the two approaches are equivalent. The slave boson
result for Θ(1) differs, however, from equation (43): the ar-
gument in one of the two hopping terms is replaced by k
and there is an additional term proportional to 1/δ. Equa-
tion (5) agrees, however, with previous X-operator results
based on the diagrammatic methods for X-operators, for
instance, equation (35) of reference [20]. The expression
for Θ(1) of reference [7] contains only one of the two hop-
ping terms t(k′) of equation (5) which, we think, is incor-
rect. The general question then arises why is it possible to
obtain different O(1/N) expressions for the same quantitiy
in the two approaches using the same Hamiltonian. The
differences arise because different Hilbert spaces are used
in the two cases. This difference is already indicated in the
definition of the order parameters for superconductivity.
In the X-operator approach all vectors of the Hilbert space
are eigenvectors of the constraintsQi with eigenvalueN/2.
Expectation values of operators are only nonzero if, in the
slave boson language, the number of created slave parti-
cles is equal to the number of annihilated slave particles
in these operators. The superconducting order parameter
of slave boson theory, on the other hand, consists of the ex-
pectation values 〈b〉 and 〈c†c†〉. Clearly, these expectation
values have no analogues in the X-operator approach.

4.1 Eigenvalues of Θ in the static limit

In the weak-coupling case it is often assumed that the
solution of the gap equation (40) is of BCS-type for each
symmetry Γi, i.e.,

Tci = 1.13ωce
1/λi . (62)
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Fig. 1. Dependence of various contributions to the total ker-
nel Θ on the second momentum k′ along the Fermi line for
a fixed first momentum k = (2.465, 0.309); (a) Contributions
Θ(1), Θ(2); (b) Contributions Θ(3), Θ(4), and the total Θ.

ωc is a suitable cut-off and λi the smallest eigenvalue of a
matrix which is essentially equal to the static limit of the
kernel Θ and given by equation (10) of reference [11]. This
matrix includes also the prefactor 1/N on the right-hand
side of equation (40) and we put from now on N always
equal to 2. Actually we will find that equation (62) is a
rather poor approximation for Tc because Θ contains in-
stantaneous and retarded contributions which have differ-
ent cut-offs. Nevertheless the study of the static kernel Θ
and its lowest eigenvalues has traditionally played a great
role in discussing superconductivity in t− J models.

Figure 1a shows the terms Θ(1) and Θ(2) and Figure 1b
the terms Θ(3),Θ(4) and Θ for singlet pairing at zero fre-
quencies for a fixed first momentum k = (2.465,0.309)
as a function of the second argument k′. k′ moves coun-
terclockwise around the Fermi line passing through the
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Fig. 2. Lowest eigenvalues λi of the static kernel Θ for the five
representations Γi of C4v as a function of the doping δ.

points X,Y (X̄, Ȳ ) along the positive (negative) x- and y-
axis, respectively. Note that the letters X,Y denote not
the k-points (π, 0), (0, π) but the points on the Fermi line
between the Γ -point and the points (π, 0), (0, π), respec-
tively. The doping is δ = 0.17 and J = 0.3. We used 22
k-points along 1/8 of the Fermi line and a net of 300×300
k-points in the Brillouin zone. Positive values of Θ mean
repulsion, negative ones attraction between electrons in
the s-wave channel. Θ(1) and Θ(2) originate from the nor-
mal, Θ(3) and Θ(4) from the anomalous vertex. Θ(1) is due
to instantaneous, the other terms due to retarded interac-
tions. The figures show that Θ(4) and Θ(1) are by far the
largest contributions. Both are dominated by the d-wave
component and add up in a coherent way. Θ(4) has dif-
ferent signs for singlet and triplet pairings. This as well
as the explicit calculation shows that important contri-
butions to Θ(4) come from spin fluctuations within the
partially filled band. There are no spin contributions re-
lated to the Heisenberg term and the magnon spectrum
at zero doping because these terms are at least one order
in 1/N smaller than the considered ones. Θ(3) is due to
charge (and spin) excitations and it is very small. Finally,
Θ(2) is due to charge fluctuations and consists of an attrac-
tive s-wave component (which, however, is cancelled by a
repulsive s-wave term in Θ(1)) and a d-wave part which
cancels partially that of the Θ(1) term. Figure 1 demon-
strates the importance of anomalous vertex contributions
to Θ, the d-wave character of the leading contributions,
and the competition between instantaneous and retarded
interactions.

Figure 2 shows the lowest eigenvalues λi for each of
the five representations Γi. In the calculation we used 5
k-points along 1/8 of the Fermi line and a net of 300×300
k-points in the Brillouin zone. The eigenvalues λi decrease
with decreasing doping δ and diverge at δ ∼ δBO ∼ 0.13.
At this doping value one of the six eigenvalues of the 6×6
matrix 1 + χ in equation (45) goes through zero . As a
result there is a soft mode which freezes into a static
incommensurate bond-order wave of d-wave symmetry
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Fig. 3. Negative imaginary part of the d-wave projected kernel
Θ3(ω + iη) as a function of the frequency ω using η = 0.005.

for δ < δBO. This instability causes a divergence in some
of the contributions to Θ at δBO and, as a precursor, the
large negative values seen in Figure 2 for δ ≤ 0.15. The
solid line in Figure 2 exhibits the lowest eigenvalue λ3 asso-
ciated with d-wave pairing. Its absolute magnitude is much
larger than all the other eigenvalues and this is true for
all dopings. Inserting λi into equation (40) it is clear that
superconducting instabilities for non-d-wave symmetries
are more of academic interest because the corresponding
T ′cs would be extremely small. One concludes that the nor-
mal state is generally unstable against superconductivity
in every symmetry channel but that only the d-wave (Γ3)
instability is strong enough to account for high transition
temperatures.

4.2 Frequency dependence of Θ

For either even or odd frequency pairing the frequency de-
pendence of Θ can be rewritten in terms of one frequency
argument ωn which is equal to the difference of the two
original frequency variables. In order to illustrate the fre-
quency dependence of the retarded part of Θ, Θret, in
the case of d-wave scattering, we average the momenta in
Θret over the Fermi line in the irreducible Brillouin zone
using the eigenvector of the lowest eigenvalue λ3. Finally
we perform the analytic continuation iωn → ω + iη.

Figure 3 shows the negative imaginary part ofΘret3 (ω+
iη) for η = 0.005. It is the analogue of the familiar function
α2F (ω) of Eliashberg theory for phonon-induced s-wave
superconductivity. In our case this function is no longer
positive-definite. This is a result of the projection of the
total kernel on the Γ3 symmetry. This projection involves
a sum of k′ over the 8 symmetry-related points along the
Fermi line with factors determined by the representation
i. In the case of d-wave pairing these factors are positive
for small and large momentum transfers (of the order of
a reciprocal lattice vector) and negative for intermediate
momentum transfers of about half of a reciprocal lattice
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Fig. 4. Real part of the d-wave projected kernel Θ3(ω + iη)
as a function of the frequency ω for η = 0.005. Inset: the same
for small frequencies using η = 0.002.

vector. For collective density fluctuations described by
Θ(2) this means that high-frequency contributions appear
with a negative and low-frequency contributions with a
positive sign in the d-wave kernel. A similar behavior is
found for the other contributions. As a result −ImΘret3 is
positive for ω ≤ ω2 ∼ |t| and negative for ω ≥ ω2. Us-
ing a momentum average with a constant weigth of Θret

corresponding to constant s-wave pairing would yield a
curve which is similar to that in Figure 3 for ω ≤ ω2 but
opposite in sign for ω ≥ ω2. −ImΘret3 describes the spec-
tral distribution and spectral weight of spin and charge
excitations involved in d-wave scattering. This function
extends over a wide frequency region of about 2|t|. Its
high-frequency part is typical for collective charge fluctu-
ations. It also contains substantial spectral weight at lower
frequencies exhibiting a rather linear increase in frequency
at the low-frequency end of the spectrum. Figure 4 shows
the corresponding real part of Θret3 . It is weakly negative
at low frequencies up to about ω1 ∼ J/2, changes then
from negative to positive values until about ω ∼ ω2. The
retarded interaction between electrons is thus attractive
for 0 ≤ ω ≤ ω1 and strongly repulsive for ω1 ≤ ω ≤ ω2.
Somewhat above ω2 the real part of Θret3 jumps to large
negative values and approaches zero from below in the
high-frequency limit. The inset of Figure 4 shows the real
part of Θ3 at small frequencies with a larger resolution
using η = 0.002.

4.3 Transition temperatures

Figures 1a and 1b show that the instantaneous and the
retarded contributions to Θ are of similar magnitude and
often compete with each other. In the calculation of Tc
they are associated with quite different cut-offs. The in-
stantaneous part is characterized by a cut-off determined
by the width of the effective band whereas the cut-off rel-
evant for the retarded part is set by the frequency range
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Fig. 5. Transition temperature Tc (with |t| as energy unit) for
Γ3 pairing using the total kernel (squares), the instantaneous
part (circles), the retarded part (diamonds) of the kernel, and
the total kernel without charge-charge term (triangles).

where attraction dominates characterized roughly by J .
In view of these complications we developed a method
to solve equation (40) directly, avoiding the use of pseu-
dopotentials. The only simplification we use is to put the
momenta of the retarded kernel on the Fermi line. The
validity of this approximation has been checked numeri-
cally and holds very well in our case. Using the fact that
the instantaneous kernel consists only of a few separable
contributions equation (40) can be reduced to a linear
matrix problem. The number of rows and columns are
given by the number of considered Matsubara frequencies
times the number of k-points on the Fermi line in the ir-
reducible Brillouin zone. Numerical tests showed that well
converged results can be obtained with about 300 Matsub-
ara frequencies and 5 k-points along 1/8 of the Fermi line
down to values for Tc of ∼ 0.002. Details of our method
will be given elsewhere.

The squares in Figure 5 (joined by a solid line) show
Tc for Γ3-symmetry for doping δ > δBO. The broken line
exhibits Tc if only the instantaneous part of the kernel
is used. The dotted line corresponds to Tc if the charge-
charge contribution (last term in Eq. (1)) is dropped. Fi-
nally the dashed-dotted line describes Tc if only the re-
tarded kernel is taken into account.

In order to understand the curves in Figure 5 we con-
sider the real part of the retarded kernel as a function of
frequency, as shown in Figure 4. Taking only the part be-
tween zero and ω2 into account would yield rather large
values for Tc. To realize this one can decompose the real
part into a large, constant repulsive part between ω = 0
and ω = ω2 plus the difference which is non-zero and
attractive at low frequencies. Changing the cut-off from
ω2 to ω1 using a pseudopotential description decreases
strongly the effective repulsion yielding a large net attrac-
tion between 0 and ω1 and thus a high value for Tc. Model
calculation show that the large negative part in the real

part of Θ3 above ω2 is very harmful to superconductivity:
Lowering first the cut-off from ∼ 3|t| to ω2 increases the
effective potential, reducing further the cut-off to ω1 de-
creases again the effective potential. The overall result is
a rather modest attraction between ω = 0 and ω = ω1.
This explains the rather low values for Tc calculated from
the retarded part of Θ alone, as shown by the dash-dotted
line in Figure 5. An alternative consideration would start
from the instantaneous part in Θ leading to the transition
temperatures shown by the broken line in Figure 5. Us-
ing a realistic value for the energy unit of about 8000 K
(note that the usual effective hopping texp corresponds ac-
cording to Eq. (1) to |t|/2) these values are already of the
order of 100 K and comparable to the experimental ones.
Adding the retarded part of the kernel does not lead to
a further increase in Tc but rather to a slight decrease as
illustrated by the squares in Figure 5. Model calculations
show that a purely attractive Θret would always increase
Tc. The observed lowering of Tc must therefore be due
to the repulsive part in Θret above ω1. This part plays a
role because the Tc due to the instantaneous part alone is
large enough to couple strongly the frequencies above and
below ω1 in the gap equation. The doping dependence of
Tc is determined by various processes which compete with
each other. For instance, the density of states decreases
with doping which decreases the effective coupling. On the
other hand, the energy scale for Tc is in the case of the
instantaneous term set by the effective band width which
increases with doping. Figure 5 shows that the net effect
of these and other processes is to lower Tc substantially
with increasing doping for δ > δBO. The eigenvalue λ3 of
the static kernel assumes according to Figure 2 large nega-
tive values near δBO anticipating the incipient bond-order
wave instability. The associated soft mode does not affect
the instantaneous but the retarded part. Figure 5 shows
that the dashed line indeed increases steeply approaching
δBO from above. On the other hand little effects are seen
in the squares representing the full calculation. The rea-
son for this is that at the low Tc’s of the dashed curve
the relevant frequencies lie in the attractive region of Θret3
whereas for the high Tc values of the squares these fre-
quencies lie already in the repulsive part. From this one
may conclude that neither soft modes nor large negative
eigenvalues of the static kernel guarantee large Tc values.
In particular, there is no simple connection between Tc
and λ3.

The squares (connected by a dashed line) in Figure 6
show Tc as a function of the exchange constant J for a
doping δ = 0.17. Tc approaches 0 for J → 0 in agreement
with previous findings [11]. Except at small values of J
Tc depends linearly on J . This is quite in contrast to the
BCS-formula with an exponential dependence on J . The
main reason for this is that the instantaneous term plays a
major role and the momenta in it cannot confined to the
Fermi surface in calculating Tc. Equation (53) is then a
more appropriate formula for Tc. It is, however, too simple
to argue that b3 in that formula is rather independent
on J and ∼ 1/T for T ≥ 0.01. The rather perfect linear
behavior is the result of more subtle dependencies such
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Fig. 6. Transition temperature Tc for Γ3 pairing versus V
(circles) and versus J (squares).

as the J-dependence of the one-particle energies and the
non-rigidity of the bands as a function of J .

It has been argued [21,22] that the nearest-neighbor
Coulomb potential V is not neglegible in the cuprates.
Adding this term

H ′ =
V

2N

∑
〈ij〉

p,q=1...N

Xpp
i Xqq

j , (63)

to the Hamiltonian equation (1) we have calculated Tc as
a function of V . The circles (connected by a solid line) in
Figure 6 present the result for J = 0.3 and δ = 0.17. Tc de-
creases strongly with increasing V and is extremely small
for V ≥ 3J/4. This may be understood by looking just at
the instantaneous term: equation (63) yields an additional
term 2V (k− k′) on the right-hand side of equation (43),
canceling the J-terms exactly for V = J . Tc would thus
vanish if only the instantaneous term would be present.
For V = J/2 H ′ cancels the charge term in equation (1).
According to Figure 6 this means a drop of Tc by about a
factor 5 compared to the value at V = 0 which also agrees
with Figure 5. Such a big drop of Tc due to the charge
term of the t − J model seems very surprising because
the latter can only produce effects ∼ δ2 and is therefore
often omitted. Our calculation shows that this term can-
not be neglected in a calculation of Tc and increases Tc
substantially.

Figure 7 shows Tc as a function of δ for J = 0.3 and
V = 0.15. Due to the Coulomb repulsion the Tc values
are rather low. The important frequencies in the solution
of the gap equation are also low and mainly located in
the attractive region of the retarded kernel, Adding the
retarded to the instantaneous part thus increases Tc. The
two curves in Figure 7 demonstrate this effect.

Figures 8 and 9 show the influence of a second-nearest
neighbor hopping term t′ on Tc. In these figures a lower
value of 0.2 has been chosen for J similar as in reference
[9] in order to have a reasonably low δBO and a Van Hove
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Fig. 7. Transition temperature Tc for Γ3 pairing for V = 0.15
using the total kernel (squares) and the instantaneous part of
the kernel (circles).
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Fig. 8. Transition temperature Tc for Γ3 pairing for J = 0.2
and t′ = −0.35 using the total kernel (squares) and the instan-
taneous part of the kernel (circles).

singularity not too far away from optimal doping. Assum-
ing a linear dependence of Tc on J the absolute values
for Tc are similar in the corresponding Figures 5 and 8.
Tc is thus rather robust to changes in t′. Tc decreases in
Figure 8 somewhat slower than in Figure 5 due to the
larger density of states in the surroundings of the Van
Hove singularity. The difference between squares and cir-
cles is also larger in Figure 8 and decreases much slower
with increasing doping. These effects are caused by the re-
tarded part of the kernel which in Figure 8 is less attractive
below ω1 and more repulsive above ω1 as shown in Figure 2
of reference [9] (note that the curve in that figure includes
a constant instantaneous contribution of −0.29). The Van
Hove singularity is located near δ = 0.28. There is nearly
no effect of the van Hove singularity on Tc for the same
reasons as in the above case of the incipient bond-order
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Fig. 9. Transition temperature Tc for J = 0.2, t′ = −0.35,
δ = 0.23 as a function of V using the total kernel (squares)
and the instantaneous part of the kernel (circles).

wave instability. (The curves in Fig. 3 of Ref. [9] were cal-
culated without the charge-charge term and, erroneously,
without the factor 1/2 in the instantaneous part. Correct-
ing this error amounts essentially to lower the curves in
that figure by about a factor 4.) Figure 9 should be com-
pared with Figure 6. Tc decreases in both cases strongly
with increasing V and practically vanishes for V ≥ J .

We have also searched for superconducting instabili-
ties with order parameters which are odd in frequency.
The sum over Matsubara frequencies is always zero in this
case so that the constraint of having no double occupan-
cies of sites at the same time is automatically fulfilled for
the two particles of the Cooper pair. There exists no static
approximation for the kernel in this case. Possible instabil-
ities are again determined by the linearized gap equation
(40) where Σan and Θ have to be projected on the odd
frequency parts. The transition temperature is determined
by the condition that the determinant of a matrix consist-
ing essentially of the kernel and the unity matrix is zero.
In Figure 10 we have plotted this determinant as function
of the temperature for each of the five irreducible repre-
sentations using J = 0.3, t′ = 0., and δ = 0.17. The Figure
clearly shows that none of the curves tends to zero in the
investigated temperature interval ruling out any odd fre-
quency pairing instability with a Tc larger than ∼ 0.002.
This also can be seen directly from Figure 11 where the
real part of Θ3(ω+ iη) is shown for odd frequency pairing
with Γ3-symmetry corresponding also to triplet pairing.
The effective interaction is repulsive up to energies ∼ t
ruling out an instability towards superconductivity in this
channel.

4.4 Conclusions

Sections 2 and 3 demonstrate the feasibility of develop-
ing a perturbation expansion for the t−J model in terms
of X-operators and obtaining explicit expressions for the
leading contributions to the anomalous self-energy of
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Fig. 10. Determinant associated with the gap equation for
odd frequency pairing with symmetry Γi as a function of tem-
perature T .
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physical electrons using an 1/N expansion. The nonappli-
cability of Wick’s theorem to X-operators does not cause
any problem in such an approach. One also should note
that the more involved and sophisticated parts of Sections
2 and 3 deal with contributions which are far beyond those
considered in previous treatments. For instance, the slave
boson 1/N result [3] for the anomalous self-energy corre-
sponds in our approach just to the inhomogenous term in
the integral equation (32). Similarly, only part of the first
contribution to the kernel, Θ(1), was calculated in refer-
ence [7] using a diagram technique for X-operators. This
shows in our opinion that the employed functional ap-
proach is at least as suitable as other approaches to treat
highly correlated Fermi systems. Taking also the numeri-
cal results of Section 3 into account our main conclusions
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can be summarized as follows:

a) Our explicit expression for the O(1/N) anoma-
lous self-energy is clearly different from the correspond-
ing expression of the slave boson theory. In particular,
the largest contribution to the retarded kernel comes
in the present approach from the anomalous part of the
vertex and has no analogue in the slave boson approach.
The presented expressions show for the first time in an ex-
plicit way that the 1/N expansions are really different in
the two approaches. This difference can be traced back to
different Hilbert spaces and different enforcement of the
constraint. Even the order parameters for superconduc-
tivity are not related in a simple way: The leading slave
boson order parameter involves necessarily (small) viola-
tions of local constraints in order to be nonzero whereas
such violations are ruled out in our approach.

b) The kernel of the linearized gap equation consists
of an instantaneous and an retarded part and both are
similar in magnitude at low frequencies and for momenta
near the Fermi surface. We found that there are super-
conducting instabilities in each symmetry channel and for
all dopings. The true ground state thus never describes a
Fermi liquid but a superconductor similar as in the weak
coupling case [23]. However, these instabilities are in gen-
eral extremely weak leading to academically low transi-
tion temperatures. The only clear and robust exception
is the d-wavelike Γ3 symmetry where a strong instability
towards superconductivity occurs. Odd symmetry pairing
mechanisms turned out to be very weak and can be ruled
out as a mechanism for high-Tc superconductivity in our
model.

c) In the case of Γ3 symmetry the real part of the re-
tarded kernel is weakly attractive at low frequencies on an
energy scale of J or a fraction thereof and strongly repul-
sive at higher frequencies whereas the instantaneous part
is attractive. Solving numerically the linearized gap equa-
tion the obtained transition temperatures Tc are forN = 2
of the order of 0.01|t| and thus in principle large enough to
account for the phenomena of high-Tc superconductivity.
It is interesting to note that the Hubbard model at small
or intermediate couplings also shows d-wave superconduc-
tivity with similar values for Tc [24]. The instantaneous
term is instrumental in getting these large values for Tc:
First, its cutoff is given by the effective band width and
thus in general larger than J . Secondly, due to the large
Tc, the solution of the gap equation involves large fre-
quencies where the retarded term is strongly repulsive. As
a result the retarded term is of less importance because
attractive and repulsive parts of it cancel each other to
a large extent. The dominance of the instantaneous part
and the presence of two cutoffs lead to strong deviations
from BCS-behavior. For instance, Tc depends linearly and
not exponentially on J except at very small values for J .

d) Tc is rather insensitive to the addition of a second-
nearest neighbor hopping term t′ and to a Van Hove sin-
gularity. The latter can be understood by noting that the
solution of the gap equation involves momentum and fre-
quency averages in the instantaneous and retarded part,

respectively, so that singularities in the density of states
are washed out. Tc depends, however, sensitively on a
nearest-neighbor Coulomb repulsion V and becomes very
small if V is substantially larger than J .

e) Our calculations are limited to dopings larger than
δBO(∼ 0.14 for J = 0.3) where an instability towards an
incommensurate bond-order wave of d-symmetry occurs.
The associated soft mode causes λ3 → −∞ for δ → δBO
whereas Tc is nearly unaffected. In the underdoped regime
δ < δBO we expect a competition between bond-order and
antiferromagnetic fluctuations which is beyond the leading
order of the 1/N expansion considered in this investiga-
tion.
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